1
11

Requirements Analysis Document

[image: image1.png]M.IR. " 2
“Moile Intefligence Rohot

Client: Facilities Management

Jerry Weinberg and Geroge Engel

Southern Illinois University Edwardsville

Version 2.0

11/29/05

Group Members:

Jason Abbett

Devon Berry

Table of Contents

1 IntRODUCTION
………………. 3

1.1Purpose of the System
3

1.2Scope of the System
3

1.3Objectives and success criteria of the project
3

1.4Definitions, acronyms, andabbreviations…………………………………..…….3

1.5References ...4
2Current System
4

3Proposed System
4

3.1Overview
4

3.2Functional Requirements
4

3.3Nonfunctional Requirements
5

3.3.1User interface and human factors
5

3.3.2Documentation
5

3.3.3Hardware Considerations
5

3.3.4Performance Characteristics
5
63.3.5
Error Handling and Extreme Conditions

63.3.6
Quality Issues

63.3.7
System Modifications

63.3.8
Physical Environment

63.3.9
Security Issues

73.3.10 Resource Issues

73.4 Pseudo Requirements

73.5 System Models

73.5.1 Scenarios

83.5.3 Object Model

83.5.3.1 Data Dictionary

93.5.3.2
Class Diagrams

103.5.4
Dynamic Models

114. Glossary

List of Figures

Figure 1.………………………………………………...………………………………...9
Figure 2.……………….…………………………………..…………………………….10
1
Introduction

1.1 Purpose of the system

The clients, Dr. Weinberg and Dr. Engel, require that we construct a robot to compete in the IEEE region 5 2006 robot tournament. The tournament will consist of a replica warehouse of 8 rooms. Four of the rooms are incoming rooms and the remaining four are outgoing rooms. There will be exactly one can placed inside of each outgoing room. Each can will be painted a different color. The outgoing rooms will correspond to one of the four colors. The robot will have to navigate the course without hitting any walls and make its way to an incoming room. Once in the room the robot has to grab the can and take it to the corresponding outgoing room. The time limit for the course is set at 3 minutes. The robot will have to place as many cans as possible within that time frame.

1.2 Scope of the System

The scope of the system is to construct a robot that will successfully complete the course. The robot should be able to identify cans from other objects and to detect the color of the can. Also the robot should be aware of its surroundings and be able to avoid walls and stay within the boundaries of the course.

1.3 Objectives and Success Criteria of the Project

The objectives of the project is design and implement a robot which will complete in the IEEE region 5 robot competition. The robot should be autonomous and be capable of navigating around the warehouse. The robot will be able to avoid walls and know where it has been. The robot can recognize the colored cans in the course and be able to place the cans in the correct room. The project will be successful if the robot runs the course is allowed to compete in the tournament.

1.4 Definitions, Acronyms, and Abbreviations

Dead Reckoning- Allows the robot to calculate distances from place to place.

Gateways- opportunity for the robot to change overall direction of navigation, (i.e. intersection of 2 hallways).

IC - Interactive C, programming language used specifically for robots.

Landmarks- Objects the robot can recognize to realize position (i.e. doors, hallways).

SDK - Software Development Kit, these are software bundles that allows programmers to develop software for a specific system.

XRC - Xport robot controller, this will be the processor for the robot and what are team will be doing the programming on.

1.5 References

http://www.2006ieeer5conference.com/. This is a link to the rules for the competition.

http://sourceforge.net/project/showfiles.php?group_id=62379&package_id=121491. This is the link to download xport 2.0 SDK and provides many source code examples. The SDK package will allow us to program the XRC.

A I Robotics, Robin R. Murphy, This is the Robotics book that Dr. Weinberg leant to us. The chapters on navigation provided good insight to robot movement.

1.6 Overview

The team is required to design and build a mobile robot which will navigate a course at the IEEE Region 5 2006 robotics competition. The robot will have to qualify by completing the course in a successful time period.

2 Current System

The current system is a robot that competed in last years competition. The robot used the XRC robot controller. Also the robot was constructed out of legos and is not very durable. Legos can easily fall apart which happened at the competition last year. The robot was programmed to use dead reckoning. This implementation required many precise calculations and very precise equipment. The robot must know where it is at all times and be able to calculate distances between objects. The XRC robot controller compiles with the cygwin bash shell. A serial port cable is used to connect the XRC to a computer, then the code is uploaded from the computer to the XRC.

3
Proposed System

3.1 Overview

The main objective of the robot is to compete in the IEEE robot competition and complete the course. To succeed, the robot will have to navigate the course and place as many of the colored cans into their corect rooms as possible.

3.2 Functional requirements

The functional requirements will require the robot to navigate through the replica warehouse. The robot must be able to avoid walls and stay within the boundaries of the warehouse. Also the robot must be able to recognize cans and their color. Then after the robot has retrieved the can it will carry it to the correct room of the same color. The robot will need to detect colors and remember where it has been. When the robot finds a can it must remember it does not need to go to that room again. The robot must have the ability to operate without outside intervention.

3.3 Nonfunctional Requirements

3.3.1 User Interface and Human Factors

The robot must be autonomous so their will not be a user interface. The robot must to make decisions based on information is recieves from its sensors. For example when the robot passes an opening to a room it will need to make a decision on whether or not to enter the room. The robot will make this decision based upon its internal program and sata from its sensors.

3.3.2 Documentation

Our clients require that we provide the proper documentation for this project. The proper documentation will provide future teams valuable information. All of our documents for the project will be placed on the sr. projects webpage. The documentation from every team member will be placed on Michael Hall's server.

3.3.3 Hardware Consideration

The XRC robot controller is the platform on which we will be programming. This hardware was selected because it is easier to make it interact with all the other hardware (e.g. sensors, cameras.) Programming will become a bit more difficult. W e will have to program at more of a hardware level for some of the functions such as color reorganization. In the end it will make the robot that much more precise than the alternative and we will learn a great deal more.

3.3.4 Performance Characteristics

The robot should be able to complete as much of the course as possible within the given time. There is a three minute time limit for the course. In order to do this the robot will need to use an algorithm to find the quickest path. Taking the quickest paths from room to room will minimize the time. Also the robot should not fall apart as it did in the last competition. To avoid this we are using more reliable materials, such as plastic and metal. These material do not fall apart easily.

3.3.5 Error Handling and Extreme Conditions

There are two types of possible errors, hardware errors and software errors. Software errors include any error that occurs within the execution of the artificial intelligence program, such as, incorrect navigation algorithms, improper use of instrument readings, infinite loops, and lock-ups. The robot shall not be able to handle these, should they occur, thus the program must be tested thoroughly before the competition. Hardware errors include errors that occur in hardware, such as, imprecise movements, tires slipping, bad instrument readings, or structure disassembly. The robot should be able to handle these, otherwise if it cannot, it will be likely to have one error and mess up the entire round. Since the conditions of the course are precisely defined, unexpected or otherwise extreme conditions are less likely.

3.3.6 Quality Issues

The robot should be able to complete the objective in a short time. If it does not, it will impact our placing in the IEEE competition. It must be able to leave the starting zone within thirty seconds and it should be quick enough to relocate the containers to their proper zones in less time then the other competitors’ robots.

3.3.7 System Modifications

After the competition, this robot shall have to be modified if it is to be used in any other tasks except the exact environment defined by the IEEE 2006 tournament rules. Skilled engineers shall be required to modify the robot for other tasks.

3.3.8 Physical Environment

The robot’s environment is the physical environment. It should be capable of interacting with it successfully without getting stuck or damaged. Its physical environment is defined as a well-lit indoor area, so it does not need to be protected from the weather or natural disasters except, of course, before the competition. It shall be an eight square foot area with one inch molding strips for barriers. It shall be composed of eight, two foot by two and a half foot rooms all connected by a three foot wide hallway in the middle.

3.3.9 Security Issues

The robot can be easily stolen by anyone provided it is not in a safe place. To protect it, it shall be locked in the VSLI lab. Though, it is still not protected from anyone who has access to the VSLI lab. It could be stored in someplace only the team has access to, such as a combination locker, but this seems unnecessary as there is more expensive equipment stored in the VSLI lab that would probably be stolen first. Also, anyone who has access to the VSLI lab would have a lot to lose from being caught stealing. If the robot does get stolen, the theft shall be reported to the authorities as soon as it is discovered.

3.3.10 Resource Issues

The robot is owned by SIUE. The parts used on the robot will likely also be owned by SIUE, with exception, perhaps, to the parts we purchase ourselves. The current cost of the robot is around $1200 dollars. As far as the ownership of the code, it shall be public domain, since several pieces will likely be used from other sources.

3.4 Pseudo Requirements

The requirements for the robot are strictly defined by the tournament rules. It must be small enough to fit in the course without having to drive over walls, distinguish and move cans from incoming rooms to their respective outgoing rooms, avoid walls, avoid accidentally pushing workers, and finish as quickly as possible. It must have a drive system for motion, a navigation sensor array to move from one room to another, a sensing element to differentiate between different colored containers, a manipulator to handle the containers, and a processor with software to coordinate all of these elements. Anything deemed unsafe about the robot by the judges will disqualify it.
3.5 System Models

3.5.1 Scenarios

Scenario name:

IEEE Competition

Participating actor instances

Robot

Flow of events

1. Robot is started in “Outgoing Room 1.”

2. It navigates to the nearest “Incoming” room.

3. It scans the room for containers.

4. If it finds a container, it identifies it, picks it up, and takes it to its respective “Outgoing Room.”

5. Then it heads to the remaining nearest “Incoming” room and repeats from step three, starting by scanning for containers.
Exit condition:
All containers have been moved to their respective outgoing rooms or three minutes have elapsed.

Special requirements:

IEEE Competition Environment

3.5.3 Object Model

3.5.3.1 Data Dictionary

	Artificial Intelligence
	Program which allows the robot to perform tasks which are normally performed by “intelligent” beings.

	Containers
	Cans which are colored red, blue, green, or yellow and contain which contain ballast at the bottom.

	Manipulator
	Device the robot uses to interact with its environment.

	Motor
	Device that allows robot to move itself.

	Navigation
	The ability for the robot to know where it is and where it is going.

	Processor
	Device that allows robot to use programs.

	Rooms
	Two feet by two and a half feet areas which are surrounded on three sides by walls.

	Sensor
	Device that allow robot to detect its environment.

	Servos
	Device that allows robot to rotate its parts.

	Walls
	One inch square wooden molding strips.

	Warehouse
	An eight feet square area in which there are eight rooms and a three feet wide hallway.

	Workers
	Barbie dolls which are covered in red, blue, green, or yellow cover-alls and are attached to a base for stability.

3.5.3.2 Class Diagrams

Figure 1: Function Hierarchy

This diagram shows the relationship between the various functions that shall be used when programming the robot. The solid-line arrows indicate functions that are called by other functions under normal circumstances. The dashed-line arrows indicate functions that are not normally called, but can be under emergency conditions. The function at the end, where the arrow is pointing, is the function that is called. In a standard run, main() shall call locate(), which shall call grab(), which shall call exit(), which shall return back to main(). Then main() shall call drop(), which shall call exit(). Then the cycle shall repeat with main() calling locate() again and so on. The cycle shall repeat three more times and then the objective shall be complete, so the program will terminate. You may note that recover() is not called during this run. Since recover() is meant for emergencies only, it is not expected to be called under normal circumstances. It is only provided to prevent errors in hardware. If the light sensors fail, it is used to get the robot back on track. It is called anytime the robot is not over either a black line or a black circle. During a run, the robot is always supposed to be over a black line or a black circle. This function shall help keep that to be true.

3.5.4 Dynamic Models

Figure 2: Warehouse Layout

	A
	
	1

	B
	
	2

	C
	
	3

	D
	
	4

Rooms A – D are incoming rooms, containers will be picked up from these rooms. Containers shall be distributed randomly to these rooms, though only one container per room. Rooms 1 – 4 are outgoing rooms, containers will be placed in these rooms. Each outgoing room has a specific color that must be returned to it. Red must be returned to room 1, blue to room 2, green to room 3, and yellow to room 4. To navigate, the robot will always start by going from room 1 to room A. Then, it will take the container to its respective outgoing room. Then it will choose the closest incoming room that it has not been to yet. If there are two incoming rooms which are the same distance from the robot, it will choose the one which is closest to the most outgoing rooms. Then it will repeat this procedure until it has been to all the rooms and thus moved all the containers. For example, first the robot moves from 1 to A. It identifies a red can, which it returns to 1. Since it has been to A already, it moves to the next nearest incoming room, B. There it finds a yellow can, which it returns to 4. From there, it moves to D where it finds a green can. It return this to 3. Then it heads to C and finds a blue can, which it returns to 2. Since it has been to all incoming rooms, it stops.

4. Glossary

Jason Abbett – Wrote the first half of this document, from the introduction to 3.3.4.

Devon Berry – Wrote the second half of this document, from 3.3.5 to this glossary.

Both team members proofread the document. Material shall be presented in class by the team member who wrote it.

Main()

Contains the main loop, the line following algorithm, and calls to other functions. It controls navigation between rooms and calls other functions upon leaving the line.

Locate()

Called upon entering an incoming room. It finds the can and moves the robot within grabbing range. Then it calls grab().

Grab()

Called upon locating and moving to a can. It uses the manipulator to grab and lift the can. Then it calls exit().

Drop()

Called upon entering an outgoing room. It makes sure it is within the black circle and then places the can on the floor. Then it calls exit().

Recover()

Called upon losing track of the line or circle. It uses other sensory readings, such as the mouse, compass, sonar, and camera, to find its way back to the line.

Exit()

Called when the robot is finished with a particular room. It finds the way back to the line at the entrance of the room. Then it returns to main()

